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Abstract—Dimension reduction (DR) is a necessary and helpful
preprocessing for hyperspectral image (HSI) classification. In this
paper, we propose a spatial and spectral regularized local dis-
criminant embedding (SSRLDE) method for DR of hyperspectral
data. In SSRLDE, hyperspectral pixels are first smoothed by the
multiscale spatial weighted mean filtering. Then, the local simi-
larity information is described by integrating a spectral-domain
regularized local preserving scatter matrix and a spatial-domain
local pixel neighborhood preserving scatter matrix. Finally, the
optimal discriminative projection is learned by minimizing a local
spatial–spectral scatter and maximizing a modified total data
scatter. Experimental results on benchmark hyperspectral data
sets show that the proposed SSRLDE significantly outperforms the
state-of-the-art DR methods for HSI classification.

Index Terms—Dimension reduction (DR), hyperspectral image
(HSI), local pixel neighborhood preserving embedding (LPNPE),
regularized local discriminant embedding (RLDE).

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) are widely used in en-
vironmental mapping, geological research, crop analysis,

and mineral identification [1]. These applications often require
to classify each pixel in the scene. Because there are a huge
number of features (or spectral bands) with only limited train-
ing samples available, HSI classification becomes a challenging
task. A large number of spectral bands provide rich information
for classifying various materials in the scene. However, with
limited training samples, the performance of classifiers deterio-
rates as the dimensionality increases [2] (Hughes phenomenon
[3]). High-dimensionality data processing also requires huge
computational resources and storage capacity [4]. Meanwhile,
the spectral bands are often correlated, and not all of them are
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useful for the specific classification task. Therefore, to achieve
an excellent classification performance, a dimension reduction
(DR) procedure is required before training the classifiers.

As a preprocessing method for classification, DR seeks a
low-dimensional representation for high-dimensional data that
may contain crucial information. DR helps to ameliorate statis-
tical ill-posed problem caused by the small-sample-size and to
improve the HSI classification performance [5]–[10]. There are
many DR methods that can be classified into the unsupervised,
supervised, and semisupervised ones. Unsupervised DR meth-
ods reveal the low-dimensional data structure without using any
label information, e.g., principal component analysis (PCA),
which finds an orthogonal projection to maximize the global
data variance, locality preserving projection (LPP) [11] and
neighborhood preserving embedding (NPE) [12], which intend
to keep the local structure of the data manifold. Supervised
DR methods use labeled samples to learn the discriminative
projections, such as linear discriminant analysis (LDA) [13],
[14], nonparametric weighted feature extraction (NWFE) [15],
local Fisher discriminant analysis (LFDA) [16], local dis-
criminant embedding (LDE) [17] (or marginal Fisher analysis
[18]), and so on. LDA seeks the best projection to maximize
the between-class distance while minimizing the within-class
distance. NWFE extends LDA by integrating nonparametric
scatter matrices with training samples around the decision
boundary [15]. LFDA combines the discriminative ability of
LDA with the local preserving ability of LPP [16]. LDE ex-
tends the global LDA by performing the local discriminant
in a graph embedding framework [17]. Semisupervised DR
methods learn the discriminant projections from both a limited
number of labeled data and a large amount of unlabeled data
while preserving a certain potential data structure [8]–[10],
[19], [20]. Semisupervised discriminant analysis (SDA) learns
the discriminant structure from the labeled samples while in-
ferring the intrinsic geometrical structure from both the labeled
and unlabeled samples [19]. Semisupervised local discriminant
analysis (SELD) combines the supervised and unsupervised DR
methods by using the supervised LDA to maximize the class
discriminations and the unsupervised LPP or NPE to preserve
the local data structures [9].

The aforementioned DR methods are spectral-based meth-
ods. They measure the similarity between samples using the
spectral-domain Euclidean distance. However, for HSIs, the
spectral-domain similarity is insufficient to reveal the intrinsic
relationships between different samples. Two samples with a
small spectral distance may have a large spatial pixel distance.
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Fig. 1. Flowchart of the proposed SSRLDE-based HSI classification system.

The projection and classification based on only the spectral
similarity metric may lead to underclassification or overclas-
sification. Therefore, the spatial interpixel correlations should
be considered in measuring the sample similarity and learning
the discriminant projections.

Spatial contexture information has been proven to be useful
to improve the HSI data representation and to increase clas-
sification accuracy [2], [21]. The methods using the spatial
information can be classified into the spatial filtering meth-
ods and feature extraction techniques. The spatial filtering
methods include the spatial filtering preprocessing methods
[22]–[25], which filter spatial homogeneous regions prior to
classification, and the spatial filtering postprocessing methods
[26], [27], which smooth the pixelwise classification map.
The feature extraction techniques contain the mean-shift-based
object extraction [28] and structural feature set method [29],
morphological transformation methods [30]–[32] which extract
the morphological profiles from the principle components of
hyperspectral data for classification, Markov random fields
techniques [33]–[36], which incorporate spatial information
into a probabilistic framework by modeling the spatial neigh-
boring pixel correlations, support vector machine with com-
posite kernels [37], which represents spatial features as the
mean or standard derivation vectors of neighboring pixels and
uses them in the SVM kernels, and multifeature models [38],
[39] which construct an SVM ensemble integrating multiple
spectral, structural, and semantic features at both the pixel and
object levels.

Instead of using the spatial information in classification,
we incorporate the spatial information into the DR process
of HSIs and propose a spatial and spectral information-based
RLDE (SSRLDE) method in this paper. In SSRLDE, the
spatial information is used in two ways: spatial filtering and
spatial discriminant analysis. Particularly, a multiscale spatial
weighted mean filtering (WMF) is used to preprocess the HSI
pixels. Then, the multiscale spatial–spectral local discriminant
features in the filtered data are extracted by a combination of
the spectral-domain regularization LDE (RLDE) and spatial-
domain local pixel NPE (LPNPE). Finally, a majority voting
method is used to fuse the complementary classification results
of each individual scale.

The proposed SSRLDE performs the LDE by using both the
spectral and spatial information. It has at least the following
characteristics.

1) The spatial filtering increases the neighboring pixel con-
sistency. The weighted method emphasizes the most sim-

ilar neighboring pixels and is effective and robust to resist
the noisy and background points.

2) The regularization strategy overcomes the singularity
caused by the small-sized samples. The regularized local
preserving scatter matrices well reveal the neighborhood
class discriminant relations and data diversity.

3) The multiscale method can describe different spatial
structures of HSIs. The rich complementary information
in the multiscale filtered data helps to improve the perfor-
mance of the subsequent DR and classification.

4) Incorporating the local pixel consistency, multiscale com-
plementarity, spectral data diversity, and local spatial–
spectral similarity information, SSRLDE preserves the
spectral-domain local neighborhood relations and spatial-
domain local pixel neighborhood structures simultane-
ously, achieving significantly discriminative projections
and high classification accuracy.

The rest of this paper is organized as follows. In Section II,
the proposed SSRLDE is described in detail. The experimen-
tal results and analysis are provided in Section III. Finally,
Section IV gives a summary of this paper.

II. PROPOSED APPROACH

The flowchart of the proposed SSRLDE-based HSI clas-
sification system is shown in Fig. 1. The HSI pixels are
preprocessed by the multiscale spatial WMF. The discrim-
inant information in the filtered data is extracted by using
a spectral-domain RLDE and a spatial-domain LPNPE. The
spatial–spectral discriminant information is then incorporated
to produce multiscale spatial–spectral features. Finally, the
classification results of each individual scale are combined by a
majority voting.

A. Spatial WMF

To reduce noise and smoothen the homogeneous regions, we
use a spatial WMF to preprocess the HSI pixels. Although there
are many filter techniques, such as edge-preserving filtering
[27] and anisotropic diffusion filtering [23], the WMF is rel-
atively simple and fast.

Denoting the pixel coordinate of sample xi as (pi, qi), we
define the local pixel neighborhood centered at xi as

N(xi)=
{
x

Δ
=(p, q)|p ∈ [pi − a, pi + a], q ∈ [qi − a, qi + a]

}

(1)
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where a = (w − 1)/2, the odd number w is the width of the
neighborhood window (called the scale). The pixels in the spa-
tial neighborhood N(xi) are denoted as xi,xi1,xi2, . . . ,xis,
where s = w2 − 1 is the number of neighbors of xi.

The spatial WMF of a labeled pixel xi is

x̂i =

∑
xj∈N(xi)

νjxj∑
xj∈N(xi)

νj
=

xi +
∑w2−1

k=1 νkxik

1 +
∑w2−1

k=1 νk
(2)

where weight νk = exp{−γ0‖xi − xik‖2} measures spectral
distance of the neighboring pixels to the central pixel. Param-
eter γ0 reflects the degree of filtering, and is empirically set to
be 0.2 in the experiments. Considering that HSIs may contain
small and large homogenous regions simultaneously, multiscale
WMF is used to capture different spatial structures of HSIs.

B. Spectral-Domain RLDE

To extract the spectral-domain local similarity and diversity
information, we propose a regularized LDE (RLDE) method.
It inherits the local discriminant ability of LDE [17], preserves
the data diversity, and overcomes the singularity in the case of
limited training samples.

Suppose there are m training samples xi ∈ Rd, i =
1, 2, . . . ,m, with labels {yi}mi=1. Denote the data matrix as
X = [x1 x2 · · · xm] ∈ Rd×m. In order to discover both the
geometrical and discriminant structures of the data manifold,
a within-class graph Gw and a between-class graph Gb are
constructed [17]. To construct Gw, for each pair of points xi

and xj from the same class, we add an edge between xi and
xj with weight ww,ij if xj is one of xi’s k1-nearest neighbors
(NN). For Gb, considering each pair xi and xj with yi �= yj ,
we connect xi and xj with weight wb,ij if xj is one of xi’s
k2-NNs. The heat kernel weight is used

wij = exp
(
−‖xi − xj‖2/t

)

where t is the heat kernel parameter. The corresponding affinity
matrices Ww and Wb are used to generate the within-class and
between-class graph Laplacian matrices: Lw = Dw −Ww and
Lb = Db −Wb, where Dw(Db) is a diagonal matrix whose
entries are column sums of Ww(Wb).

RLDE performs the spectral-domain local discriminant in a
graph embedding framework, and it finds the optimal projection
V from the following optimization problem:

max
V

Tr
{
V T

[
(1− α)XLbX

T + αXXT
]
V
}

Tr {V T [(1− α)XLwXT + αdiag(XLwXT )]V } (3)

where α ∈ [0 1] is a regularization parameter, Tr{A} represents
the trace of matrix A, and diag(A) means the diagonal parts of
matrix A.

Our contribution on RLDE is the regularization strategy. The
regularization term XXT in the numerator is used to preserve
the maximal data variance. The diagonal regularization in the
denominator improves the stability of the solution without
impacting the local intraclass neighborhood preserving ability.
It only decreases the off-diagonal elements of XLwX

T while
keeping the diagonal entries unchanged. Although the trace is

unchanged, the diagonal regularization allows the large eigen-
values of XLwX

T to decrease and the small or zero ones to
increase. Thus, the regularized local preserving scatter matrix
defined in (3) is positive definite. RLDE is suitable for the
small-sample-size HSI classification problem.

When α = 0, RLDE reverts back to LDE defined in [17].
When α = 1 and the diag(XLwX

T ) is replaced with an iden-
tity matrix, RLDE becomes PCA. RLDE can utilize labeled
samples to learn the discriminative projections and can use
regularization terms to incorporate the data diversity and avoid
the overfitting problem. Thus, RLDE is able to surpass LDE
and PCA for the HSI DR.

The optimal RLDE projection V = [v1 v2 · · · v�] is ob-
tained by finding the generalized eigenvectors corresponding
to the � largest eigenvalues in
[
(1− α)XLbX

T + αXXT
]
v

= λ
[
(1− α)XLwX

T + αdiag(XLwX
T )

]
v. (4)

C. Spatial-Domain LPNPE

Due to the fact that the neighboring pixels in a spatial local
homogeneous region consist of the same materials and belong
to the same class, we propose a spatial-domain LPNPE method.
Different from the traditional spectral-based DR methods, LP-
NPE uses the spatial information to learn the discriminant
projections. It preserves the spatial local pixel neighborhood
structures, that is, neighborhood pixels in the original spatial
space remain neighbors in the LPNPE-embedded space, and
vice versa.

A training sample xi and its pixel neighbors in N(xi) form
a local pixel patch: Pi = {xi,xi1,xi2, . . . ,xis}. The distance
metric (scatter) in the local pixel patch can be defined as

hi =

s∑
k=1

νk∑s
j=1 νj

(xi − xik)(xi − xik)
T

where weight νk defined in (2) measures the spectral similarity
between the neighboring pixels to the central pixel.

Consider all training samples in the HSI data, the local pixel
neighborhood preserving scatter matrix is

H =

m∑
i=1

hi =

m∑
i=1

s∑
k=1

νk∑s
j=1 νj

(xi − xik)(xi − xik)
T .

Denote the total scatter matrix as

S =

m∑
i=1

(xi −m)(xi −m)T = XX
T

where m is the mean of training samples.
LPNPE seeks a linear projection matrix such that the local

pixel neighborhood preserving scatter is minimized, whereas
the total scatter is maximized in the projected space. The
optimal projection V = [v1 v2 · · · v�] can be obtained by
solving the generalized eigenvalue problem

Sv = λHv. (5)
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D. Spatial–Spectral Feature Extraction and Classification

RLDE uses only the spectral information to learn the
discriminant projections, and it aims to preserve the local
neighborhood class relations measured by the spectral-domain
Euclidean distance. Due to the distribution characteristics of
HSIs: large homogeneous regions and multimodal data struc-
tures, neighboring samples in the same class may have large
pixel distances and even belong to different subregions. If it
only preserves the spectral neighborhood relations, the RLDE
projections might attract unwanted neighbors of different sub-
regions and destroy the spatial local pixel neighborhood struc-
tures. Assume additional spatial information is available, it can
reduce the spectral variations in the local regions and preserve
the detailed image structures.

On the other hand, LPNPE preserves the spatial local pixel
neighborhood structures by using only spatial information. It
does not use the labeled spectral information. It is actually
an unsupervised DR method. If two labeled pixels (spectral
neighbors) in a homogeneous region have a large pixel distance,
LPNPE will not connect them directly. In this case, the labeled
information enforces the connection of spectral neighbors,
which will improve the discrimination.

The spectral information and spatial information are com-
plementary to each other. In learning the discriminant projec-
tions, not only the spectral labeled information but also the
spatial interpixel correlations are required to be considered.
Thus, we propose a spatial–spectral information-based RLDE
(SSRLDE) method. It preserves not only the spectral-domain
local Euclidean neighborhood class relations but also the
spatial-domain local pixel neighborhood structures.

Combining RLDE and LPNPE, we obtain the spatial–
spectral local neighborhood preserving scatter matrix

Rw = β [(1− α)Sw + αdiag(Sw)] + (1− β)H

and a modified total data scatter matrix

Rb =β
[
(1− α)Sb + αXXT

]
+ (1− β)S

=β(1− α)Sb + (1− β(1− α))S

where 0 � α, β � 1, Sw = XLwX
T , Sb = XLbX

T , and S =
XXT (assuming the data are mean centered).

For sample xi, the final spatial–spectral discriminant
feature is

z = V Txi (6)

where the projection matrix V = [v1 v2 · · · v�] is obtained
by finding the generalized eigenvectors corresponding to the �
largest eigenvalues in

Rbv = λRwv. (7)

When the multiscale spatial–spectral discriminant features
are obtained, we can perform the classification on the
spatial–spectral features of each scale individually and finally
fuse the classification results in different scales by a majority
voting. More about the classifier fusion strategy can be referred
to [38] and [39]. The ensemble of the multiscale complemen-

tary information ensures excellent classification performance of
the proposed SSRLDE.

E. Discussion

The proposed SSRLDE has the following properties.

1) Local pixel consistency. The spatial WMF used in
SSRLDE can smoothen the homogeneous areas and in-
crease the local neighborhood pixel consistency. After
filtering, samples in the same homogeneous areas are sim-
ilar and consistent. This conforms to the characteristics of
HSIs: the local homogeneous distribution.

2) Multiscale complementarity. The multiscale method can
solve the scale selection problem and provide rich com-
plementary information. The scale or window should
cover the local homogeneous regions as accurately as
possible such that the filtered data have better local
pixel consistency. Because different HSI data have dif-
ferent spatial contextual structures and even the same
data may contain small and large homogenous regions
simultaneously, it is difficult to pre-define an optimal
scale. In the multiscale framework, it is free of the scale
selection. Different scales provide different views of a
local homogeneous region. The complementary informa-
tion in different scales helps to accurately describe the
local homogeneous regions and improve the classification
performance.

3) Regularization stability and data diversity. Regularization
in RLDE solves the singularity (stability) problem with-
out discarding the discriminant features. From the view-
point of eigenspectrum, when the training samples are
limited, eigenvalues decay rapidly and finally reach zero
[40]. Small and zero eigenvalues are unstable, and the
corresponding null spaces lose the discriminative infor-
mation. In RLDE, regularization can counteract the bias
estimation of small eigenvalues based on limited training
samples [13]. After regularization, the large eigenvalues
of the local preserving scatter matrix decrease, whereas
the small ones increase. The decay of eigenvalues slows
down. The zero eigenvalues are no longer zeros. The
useful discriminative information retains. Hence, RLDE
is more stable.

In addition, RLDE preserves the data diversity via the
regularization terms. The data diversity has been proven
to be effective in improving the classification perfor-
mance [41]. In RLDE, the covariance regularization part
corresponds to the data variance. By maximizing the
data variance, the data diversity can be well preserved
[42]. Moreover, the diagonal regularization involves the
diversity of data in the same class and was known to
be beneficial for classification [15], [43]. In RLDE in
(3), the diagonal regularization decreases the cross terms
of the local preserving scatter distances. Relatively, it
emphasizes more on the diagonal terms which reflect the
intraclass variation at a certain extent.

4) Algorithm flexibility. When β = 0, (7) is reduced to (5).
SSRLDE reverts back to LPNPE. LPNPE does not use
the spectral-domain labeled information but uses only
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Fig. 2. Local neighbors. (a) Spectral-domain neighbors. (b) Spectral-domain
neighbors after spatial filtering. (c) Spatial-domain local pixel neighbors.
(d) Spatial–spectral local neighbors.

the spatial-domain local pixel neighbors of each training
sample. When a large amount of training samples (labeled
or unlabeled) are available, LPNPE can be significantly
improved.

When β = 1, (7) is reduced to (4). SSRLDE becomes
RLDE, which does not use the spatial information. When
the spatial local pixel neighbors and pixel positions for
each training sample are not available, RLDE can still be
applicable. We will show later that RLDE outperforms
the state-of-the-art spectral-based DR methods.

For different problems, parameter β needs to be
tuned accordingly to balance the spatial and spectral
information.

5) Local spatial–spectral similarity. SSRLDE integrates
both the local spectral and spatial similarity discriminant
information. In the spectral domain, RLDE preserves
the local Euclidean neighborhood of the same class.
Considering four NNs, the spectral-domain within-class
neighborhood relation is shown in Fig. 2(a), where a
labeled sample is connected with its four NNs in the same
class (yellow points). Because HSIs have multimodal data
structures, the data of a specific class usually contain
several subregions. Therefore, the nearest within-class
neighbors of a given sample may distribute in different
spatial subregions. In Fig. 2(a), the upper isolated sample
just belongs to another subregion and has large pixel
(or location) distances to other labeled samples. If it
forces to preserve the Euclidean neighborhood relations
and thus connects different subregions, the projection
might destroy the spatial structures of HSIs. The spatial
filtering can alleviate this problem at a certain extent.
It increases the similarity between neighboring pixels,
reduces spectral variations in a local region, and thus
improves the spectral neighboring relations. After the
spatial filtering, the samples in a local pixel neighborhood
are similar, and the four nearest labeled spectral-domain
neighbors are changed, as shown in Fig. 2(b). In the
spatial domain, LPNPE preserves the local pixel neigh-
borhood relations shown in Fig. 2(c), where the window
of 3 × 3 is used and the labeled sample is connected
with its eight pixel neighbors (blue points). SSRLDE
incorporates RLDE and LPNPE. It aims to preserve both
the local spatial–spectral neighbors, as shown in Fig. 2(d).

F. Projected Data Distribution

Here, we visualize the projected data distribution of SS-
RLDE. For this purpose, we choose three classes Reeds1,
Riparian, and Firescar2 from the Botswana data set [shown

Fig. 3. Two-dimensional projections for different DR methods. The red,
green, and blue points represent the Reeds1, Riparian, and Firescar2, respec-
tively. (a) LDA. (b) LFDA. (c) LDE. (d) RLDE. (e) SSRLDE (α = 0.5, β =
0.1); (f) SSRLDE (α = 0.5, β = 0.5).

in Fig. 6(a)] and select 60 samples from each class to train
the model. We compare the projection results of the proposed
RLDE and SSRLDE with those of three spectral-based DR
methods: LDA, LFDA [16], and LDE [17]. In SSRLDE, we use
a moderate scale of 9 × 9 for simplicity. The data are projected
into two dimensions. Fig. 3 shows the 2-D projected testing data
distributions.

LDA and LFDA show lower interclass separability. For LDE
shown in Fig. 3(c), the Firescar2 class in the blue color is visibly
separated, whereas the other two classes in the red and green
colors are largely overlapped. Compared with three existing
spectral DR methods, RLDE provides a relatively better dis-
criminant result. These four spectral domain DR methods pro-
vide large intraclass scatters. By using the spatial information,
the projected data of SSRLDE are more compact, as shown in
Fig. 3(e) and (f). In Fig. 3(e), β = 0.1 implies that the spatial-
domain LPNPE is dominant; therefore, the projection mainly
preserves the local pixel neighborhood. From the ground-truth
map of the original data, as shown in Fig. 6(e), we can see that
the three classes Reeds1, Riparian, and Firescar2 have about 6,
6, and 3 subregions, respectively. LPNPE preserves the spatial
local neighborhood structures, that is, spatial nearby pixels in
the original space are mapped to nearby pixels in the low-
dimensional feature space. Thus, the projected data in Fig. 3(e)
also have several clusters in each class. In Fig. 3(f), a moderate
value of β is used and the corresponding SSRLDE preserves
the spatial local pixel neighborhood while connecting different
subregions of the same class using the spectral labeled samples.
It realizes a tradeoff of the local neighborhood preserving
between the spectral and spatial domains. The projected data
are concentrated within the same class and dispersed between
different classes.

Furthermore, Fig. 4 plots the 2-D projected distributions of
SSRLDE for all 14 classes in the testing data of Botswana.
Although there are several overlaps, the projected data show
that SSRLDE has good class separability considering that only
two features are used.

G. Comparison

Here, we investigate the effectiveness of the regularization,
spatial filtering, spatial–spectral discriminant, and multiscale
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Fig. 4. Two-dimensional data projections of 14 classes for SSRLDE.

Fig. 5. Classification maps of the University of Pavia data set. (a) LDE.
(b) RLDE. (c) RLDE on the 3 × 3 filtered data. (d) LPNPE on the 3 × 3 filtered
data. (e) SSRLDE on the 3 × 3 filtered data. (f) SSRLDE on the multiscale
filtered data.

in SSRLDE from the classification map containing only the
training and testing samples of the University of Pavia data
set. The classification maps of LDE and RLDE on the original
spectral data, RLDE, LPNPE, and SSRLDE on the 3 × 3
filtered data, and SSRLDE on the multiscale filtered data are
shown in Fig. 5, where 30 samples in each class are chosen as
the training samples.

From Fig. 5, we can find that:

1) Comparing Fig. 5(b) with (a), regularization in RLDE
improves LDE, particularly the central circled region.

2) Comparing Fig. 5(c) with (b), the spatial filtering prepro-
cessing increases the separability of homogenous regions.
The spatial filtering removes most noise in large homoge-
neous areas, as shown in two circled regions in Fig. 5(c).

3) Investigating Fig. 5(d) and (c), there exists complemen-
tarity between the spectral and spatial information. In
the central circled region, LPNPE shows better results.
However, in the bottom circled region, RLDE performs
much better.

4) SSRLDE takes both advantages of RLDE and LPNPE.
The joint spatial–spectral discriminant in Fig. 5(e) is
much better than either the spectral discriminant in
Fig. 5(c) or the spatial discriminant in Fig. 5(d).

5) The multiscale method exploits the rich complementary
information. The corresponding SSRLDE provides satis-
factory classification map in Fig. 5(f).

III. EXPERIMENTAL RESULTS

Here, we perform SSRLDE on four HSI data sets. The
effectiveness of SSRLDE is evaluated by the classification
overall accuracy (OA) of the 1-NN and SVM [44] classifiers
on the projected data.1

A. Hyperspectral Data Sets

1) Okavango Delta, Botswana: The data set was acquired
by the NASA EO-1 satellite over the Okavango Delta,
Botswana on May 31, 2001 [45]. The image scene has
the size of 1476 × 256 pixels. After discarding water
absorption and noisy bands, 145 bands are retained. The
data contain 3428 samples from 14 identified classes
[45].2 The false color image and the ground-truth map
are shown in Fig. 6(a) and (e).

2) Kennedy Space Center (KSC): The data set was acquired
by the NASA AVIRIS instrument over the KSC, Florida,
on March 23, 1996 [45].3 The image scene has the size
of 512 × 614 pixels and 224 spectral channels. After
discarding water absorption and noisy bands, 176 bands
are retained. It contains 13 ground-truth classes. The total
number of samples is 5211 ranging from 105 to 927 in
each class. The false color composition of bands 31, 21,
and 11 and the ground-truth map are shown in Fig. 6(b)
and (f).

3) University of Pavia: The data set was acquired in 2001 by
the ROSIS instrument over the city of Pavia, Italy [36].4

This image scene corresponds to the University of Pavia
and has the size of 610 × 340 pixels and 115 spectral
bands. After discarding noisy and water absorption bands,
103 bands are retained. The data contain 9 ground-truth
classes. The false color composition of bands 60, 30,
and 2 and the ground-truth map are shown in Fig. 6(c)
and (g).

4) Indian Pines: The data set was acquired by the AVIRIS
sensor in 1992.4 The image scene contains 145 × 145
pixels and 220 spectral bands, where 20 channels were
discarded because of the atmospheric affection. There are
16 classes in the data set. The total number of samples
is 10249 ranging from 20 to 2455 in each class. The
false color composition of bands 50, 27, and 17 and the
ground-truth map are shown in Fig. 6(d) and (h).

1Available online: http://www.csie.ntu.edu.tw/~cjlin/libsvm
2Available online: http://www.csr.utexas.edu/hyperspectral/data/Botswana/
3Available online: http://www.csr.utexas.edu/hyperspectral/data/KSC/
4Available online: http://www.ehu.es/ccwintco/index.php/

Hyperspectral_Remote_Sensing_Scenes
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Fig. 6. RGB composite images and ground-truth maps of four data sets.
(a) Botswana image of bands 51, 149, and 31. (b) KSC image of bands 31, 21,
and 11. (c) University of Pavia image of bands 60, 30, and 2. (d) Indian Pines
image of bands 50, 27, and 17. (e)–(h) Corresponding ground-truth maps.

B. Parameter Selection

To construct the spectral-domain local preserving scatter
matrix, SSRLDE needs to determine three basic RLDE graph
parameters: the number of intraclass and interclass neighbors
k1 and k2, and the heat kernel parameter t. In the experiments,
we empirically set k1 = k2 = 5 and t = 0.5. Then, we tune
the regularization parameters α and β to make a compromise
between the spectral-domain and spatial-domain local neigh-
borhood preserving. The parameters α and β are chosen in the

Fig. 7. OA versus α and β on the Botswana data set.

set {0, 0.1, 0.2, . . . , 0.9}. A fixed 3 × 3 neighborhood window
is used in the spatial WMF. Fifteen samples in each class are
selected as the training set for the parameter selection. We find
the optimum parameter values in the region to ensure that the
classification OA of the SSRLDE method combined with the
NN classifier is maximized.

We take the Botswana data set as an example to show the
parameter selection. Fig. 7 shows the OA of SSRLDE as a
function of α and β. It can be clearly seen that the over-
all accuracies are relatively small in three boundaries. When
α = 0 and β = 1, SSRLDE is reduced to LDE. When α = 1
and β = 1, SSRLDE can be considered as a modified PCA.
When β = 0, SSRLDE reverts back to LPNPE. In these three
cases, SSRLDE provides the worse results. The parameter pair
(α, β) = (0.3, 0.2) achieves the maximum OA and is then used
in the following experiments.

Similarly, we can find the optimal parameters for other data
sets. Namely, for the KSC data set, α = 0.1 and β = 0.4; for
the University of Pavia data set, α = 0.2 and β = 0.3; and for
the Indian Pines data set, α = 0.1 and β = 0.1.

C. Investigation of the Local Preserving Term

SSRLDE contains two local preserving terms: the spectral-
domain and spatial-domain local neighborhood preserving
terms. When considering only one of them, SSRLDE reverts
back to RLDE or LPNPE, as discussed in Section II-E. Here,
we investigate the effectiveness of these two local preserving
terms separately.

We randomly select 15 labeled samples from each class to
form the training set. The remaining samples construct the
testing set. The reduced dimensionality varies from 2 to 30.
The NN classifier is used. The averaged classification OA of
over ten runs is measured. The classification results of RLDE,
LPNPE, and SSRLDE are shown in Fig. 8.

As can be seen from the results, for the Botswana and Uni-
versity of Pavia data sets, RLDE performs better than LPNPE.
For the KSC and Indian Pines data sets, LPNPE is better than
RLDE. Neither of these two methods (i.e., spectral based and
spatial based) is intrinsically better than the other. However,
in all cases, SSRLDE is superior to RLDE and LPNPE. This
demonstrates that the spectral information and spatial informa-
tion are essential and complementary. By integrating the two
local neighborhood preserving terms, SSRLDE achieves higher



ZHOU et al.: DIMENSION REDUCTION USING SSRLDE FOR HSI CLASSIFICATION 1089

Fig. 8. Comparison of the local preserving terms on four data sets. (a) Botswana. (b) KSC. (c) University of Pavia. (d) Indian Pines. (The highest OAs are marked
as solid circles.).

Fig. 9. Effects of the neighborhood scale on four data sets. (a) Botswana. (b) KSC. (c) University of Pavia. (d) Indian Pines. (The horizonal lines correspond to
the ensemble results of NN and SVM.).

classification accuracies than that of the individual discriminant
projection.

D. Investigation of the Neighborhood Scale

The neighborhood scale (window size) affects the filtering
results. To show its impact, we provide seven different scales,
i.e., 3× 3, 5× 5, . . . , 15× 15. Fifteen samples in each class
are selected as the training set, and the remaining samples are
set as testing samples. The reduced dimension is fixed as 15.
Fig. 9 shows the changes of overall accuracies as a function of
scales for four data sets, where the NN and SVM classification
results are reported and the corresponding ensemble results
using the majority voting are indicated by the horizonal lines.

From Fig. 9, we can see that the best OAs for the Botswana,
KSC, University of Pavia, and Indian Pines data sets are
achieved at the neighborhood scale 15, 11, 7, 11, respectively.
Roughly, the large scale benefits HSI classification. This may
be because of the use of WMF and the presence of large
homogenous regions. The WMF endows each pixel in the
window with a weight according to its spectral similarity to the
central pixel. By adjusting the weights, the effect of unrelated
pixels in a large window decreases, whereas the effect of the
similar pixels is emphasized.

For four data sets, the multiscale outputs outperform the
optimal results in each single scale. The multiscale windows
can provide an accurate description of various HSI homoge-
neous regions. The ensemble of complementary information in
different scales achieves higher OAs.

E. Contribution of Each Step in SSRLDE

Here, we analyze the effect and contribution of each pro-
cessing step of SSRLDE to its final classification results. We

compare the algorithms with and without the weighted mean
filter (WMF)-based spatial preprocessing (No WMF versus
WMF), dimensionality reduction (No DR versus DR), regular-
ization (LDE versus RLDE), joint spatial–spectral discriminant
analysis (RLDE, LPNPE versus SSRLDE1), and multiscale
voting (SSRLDE1 versus SSRLDE). The comparison results in
terms of the classification overall accuracies in the case of 15
labeled samples for four data sets are shown in Table I, where
SSRLDE1 refers to the combination of RLDE and LPNPE.
In the case of “WMF,” a single neighborhood window 3 × 3
is used for different algorithms except for SSRLDEopt and
SSRLDE, where SSRLDEopt refers to SSRLDE with the op-
timal window selected in Section III-D and SSRLDE is the
ensemble of seven different scales.

Throughout different processing steps of SSRLDE in Table I,
the WMF-based spatial preprocessing dramatically enhances
OAs on the original spectral data by increasing the similarity
and consistency of neighboring pixels, then the dimensionality
reduction method of LDE improves the classification results
on the whole spectral bands by discarding redundant features.
The regularization method used in RLDE plays an important
role and achieves higher OAs than LDE. Later, SSRLDE1
takes advantages of both the spatial and spectral discriminant
information and provides the better classification performance
than either the spectral-based RLDE or spatial-based LPNPE.
Finally, a multiscale ensemble strategy further improves the
classification results by exploiting the rich complementary in-
formation in different scales.

F. Comparison With Other DR Methods

For evaluating the performance of the proposed SSRLDE,
we randomly choose N = 5, 10, 15, 20, 25, 30 samples from
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TABLE I
CLASSIFICATION ACCURACIES (IN PERCENT) ON FOUR DATA SETS IN THE CASE OF 15 LABELED SAMPLES TO SHOW

DIFFERENT CONTRIBUTIONS OF EACH PROCESSING STEP OF SSRLDE TO ITS FINAL CLASSIFICATION RESULTS

TABLE II
HIGHEST OVERALL ACCURACIES (IN PERCENT) ON THE BOTSWANA DATA SET

each class to form the training set, respectively (For the Indian
Pines data set, at a maximum half of total samples in Grass-
pasture-mowed and Oats classes are chosen). The remaining
samples are set as the testing set. In each case, the experiment
is repeated ten times with randomly chosen training samples.
Finally, the results of ten runs are averaged. In SSRLDE, seven
scales from 3 × 3 to 15 × 15 are used. For a fixed scale,
HSI pixels are preprocessed by the spatial WMF defined in (2).
Performing the joint spatial and spectral local discriminant on
the filtered data, the spatial–spectral features can be extracted,
as shown in (6). A classifier is then performed on the extracted
features to obtain the classification results (the prediction vector
contains the predicted labels for all samples). For multiple
scales, we repeat the aforementioned processes for each scale
to obtain the multiple prediction vectors. Fusing the multiple

prediction results with a majority voting, we can obtain the final
classification label for each sample.

The proposed SSRLDE is compared with other commonly
used supervised DR methods, including PCA, LDA, LFDA
[16], NWFE [15], and LDE [17], and semisupervised DR
methods, including SDA [19], SELDLPP, and SELDNPE [9].
For the semisupervised DR methods, the unlabeled samples are
chosen as follows: for the Botswana and KSC data sets, all
testing samples are set as unlabeled samples, for the University
of Pavia and Indian Pines data sets, 300 samples of each class
in the testing set are chosen as unlabeled samples (For the class
less than 300 testing samples, all testing samples are used).
These spectral-based DR methods are performed on the filtered
data using a 3 × 3 weighted mean filter. The classification
results on the filtered data without dimensionality reduction
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TABLE III
HIGHEST OVERALL ACCURACIES (IN PERCENT) ON THE KSC DATA SET

TABLE IV
HIGHEST OVERALL ACCURACIES (IN PERCENT) ON THE UNIVERSITY OF PAVIA DATA SET

(“RAW”), the RLDE classification results without using the
spatial discriminant information, and the LPNPE classification
results without using the spectral information are also included
for comparisons. In LDA, a regularization is used to alleviate
the singularity problem by shrinking the within-class scatter
matrix toward the identity matrix [13]. In LDE, a PCA prepro-
cessing is employed to overcome the singularity of the local
preserving scatter matrix [17]. The NN and SVM classifiers
are used. The three-fold cross validation is used to select the
optimal penalty parameters C and RBF kernel parameter γ in
SVM. The reduced dimensionality varies from 2 to 30, and the
best results are presented.

The comparison results on four HSI data sets are shown
in Tables II–V, respectively. The results in the tables are the
highest overall accuracies (%) among the first 30 features. Each
number in the brackets corresponds to the optimal number

of extracted features. From these results, we can obtain the
following conclusions.

1) DR can improve the HSI classification performance using
only few extracted features. This is because most features
are redundant and the intrinsic discriminant information
is within few features.

2) For all methods, the OA improves as the number of
training samples increases.

3) RLDE greatly improves LDE and shows better overall
performance than other supervised spectral-based DR
methods. This demonstrates the regularization is effective
in ameliorating the small-sample-size singularity prob-
lem and in improving the classification performance.

4) Using both the labeled and unlabeled data, the semisu-
pervised DR methods show certain improvements over
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TABLE V
HIGHEST OVERALL ACCURACIES (IN PERCENT) ON THE INDIAN PINES DATA SET

Fig. 10. Effects of the reduced dimensions on four data sets. From left to right, Botswana, KSC, University of Pavia, Indian Pines. (a)–(d) Five labeled samples.
(e)–(h) Fifteen labeled samples. (i)–(l) Thirty labeled samples.

the supervised DR methods. Different semisupervised
methods are suitable for different data sets.

5) Incorporating the spatial and spectral information,
SSRLDE dramatically outperforms the spectral-based
supervised and semisupervised DR methods. Although
both SSRLDE and semisupervised DR methods use ad-
ditional unlabeled samples, the unlabeled spatial pixels

in SSRLDE contain the interpixel structure information,
whereas the potential structure of the unlabeled spectral
samples in SDA or SELD are unknown.

Fig. 10 shows the variations of OAs with the reduced di-
mensions for four data sets, where 5, 15 and 30 samples per
class are labeled. We can see that SSRLDE outperforms other
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Fig. 11. Classification maps for the University of Pavia data set using the SVM classifier. (a) Ground truth. (b) PCA. (c) LDA. (d) LFDA. (e) NWFE. (f) LDE.
(g) RLDE. (h) LPNPE. (i) SDA. (j) SELDLPP. (k) SELDNPE. (l) SSRLDE.

Fig. 12. Classification maps for the Indian Pines data set using the SVM classifier. (a) Ground-truth. (b) PCA. (c) LDA. (d) LFDA. (e) NWFE. (f) LDE.
(g) RLDE. (h) LPNPE. (i) SDA. (j) SELDLPP. (k) SELDNPE. (l) SSRLDE.

DR methods in terms of the consistent classification results
over a wide range of extracted features. The proposed SSRLDE
achieves stable classification results around 8, 12, 15 and 20
features for the Botswana, KSC, University of Pavia, and Indian
Pines data sets, respectively.

Figs. 11 and 12 show the classification maps on the whole
image for the University of Pavia and Indian Pines data sets.
The maps correspond to the classification results using the
SVM classifier with different DR methods, including PCA,
LDA, LFDA, NWFE, LDE, RLDE, LPNPE, SDA, SELDLPP,
SELDNPE, and SSRLDE. As can be seen from Figs. 11 and
12, the spectral-based DR methods produce the classifica-
tion results with more noise. SSRLDE significantly removes
the Salt&Pepper noise on homogeneous regions and leads to
a much smoother classification map than the pixelwise al-
gorithms. It also notes that the spatial information used in
SSRLDE causes oversmoothing over neighboring classes. Due
to the spatial filtering preprocessing, neighboring pixels are

forced to be similar. This increases the separability of classes
but blurs the edges or boundaries between adjacent objects,
particularly when a large filtering window is being used. It can
be seen from the maps, the spatial aggregation makes large
homogeneous regions moderately growing, and benefits to the
classification at both boundary and inner homogeneous regions
with the risk of losing detailed structures. It needs to balance the
tradeoff between the degree of smoothness and the preservation
of boundaries in real applications.

IV. CONCLUSION

In this paper, we have proposed an SSRLDE method for
DR of the HSI data. The proposed method has the following
characteristics: 1) the multiscale spatial WMF increases the
neighboring pixel consistency and provides the rich and ro-
bust complementary information; 2) the regularization strategy
overcomes the singularity, embodies the data diversity, and
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improves the classification performance; 3) incorporating the
spatial and spectral discriminant information leads to excel-
lent discriminative projections. The proposed method has been
compared with other DR methods on four HSI data sets in
the cases of limited labeled samples. Experimental results have
demonstrated that our proposed SSRLDE has better perfor-
mance and higher classification accuracies.
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